Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dent J (Basel) ; 12(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668025

RESUMEN

The microbial compositions from concurrent peri-implant and periodontal lesions were compared, since the results reported in the literature on the etiological relationship between these oral pathologies are contradictory. Microbial compositions from nine patients were evaluated using Illumina MiSeq sequencing of 16S rRNA gene amplicons and Principal Components Analysis. Comparisons between the use of curettes or paper points as collection methods and between bacterial composition in both pathologies were performed. Paper points allowed the recovery of a higher number of bacterial genera. A higher bacterial diversity was found in peri-implantitis compared to periodontal samples from the same patient, while a greater number of operational taxonomic units (OTUs) were present in the corresponding periodontal samples. A higher abundance of oral pathogens, such as Porphyromonas or Treponema, was found in peri-implantitis sites. The opposite trend was observed for Aggregatibacter abundance, which was higher in periodontal than in peri-implantitis lesions, suggesting that both oral pathologies could be considered different but related diseases. Although the analysis of a higher number of samples would be needed, the differences regarding the microbial composition provide a basis for further understating the pathogenesis of peri-implant infections.

2.
Int J Food Microbiol ; 413: 110605, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308879

RESUMEN

Given the increasing incidence of multidrug-resistant (MDR) Klebsiella pneumoniae infections, it is of great interest to investigate the risk of transmission associated with the prevalence of this pathogen. Some studies have described fresh raw poultry meat as a reservoir of MDR K. pneumoniae, including clinically relevant sequence types (ST) and extended-spectrum ß-lactamase (ESBL) strains, indicating possible consumer exposure. This study compared 47 MDR strains of K. pneumoniae from poultry meat and human clinical isolates to assess similarities, including analysis of antimicrobial resistance profiles and virulence factors involved in infection. In addition, several biofilm culture methods were evaluated for reproducible assessment of biofilm formation in K. pneumoniae strains. Globally, no association between strain origin and STs, hypermucoviscosity, biofilm formation or serum resistance could be found between isolates of food and clinical origin, nor an associated AMR pattern, suggesting overlapping populations. We found that LB supplemented with glucose in microaerobiosis was the best discrimination condition for biofilm formation in the active attachment biofilm cultivation model. The biofilm formation capacity was strongly dependent on culture conditions, with a strain-specific response, but only a minor increase in biofilm levels was recorded in clinical K. pneumoniae populations. Our results suggest that a similar risk of zoonosis transmission from potentially virulent foodborne strains previously observed in E. coli is also present in this high-priority pathogen. This study further confirms that foodborne isolates of K. pneumoniae pose a risk to consumers and therefore this pathogen should be included in the surveillance of foodborne pathogens with high risk of MDR infections and therapeutic failure.


Asunto(s)
Escherichia coli , Infecciones por Klebsiella , Animales , Humanos , Klebsiella pneumoniae , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Zoonosis , Biopelículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas , Pruebas de Sensibilidad Microbiana
3.
Antibiotics (Basel) ; 12(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37627682

RESUMEN

Quorum quenching (QQ) is the inhibition of bacterial communication, i.e., quorum sensing (QS). QS is a key mechanism in regulating biofilm formation and phenotype in complex bacterial communities, such as those found within cariogenic biofilms. Whereas QQ approaches were shown to effectively reduce biomass, knowledge of their impact on the taxonomic composition of oral polymicrobial biofilms remains scarce. Here, we investigate the effect of the QQ lactonase Aii20J on biomass production and taxonomical composition of biofilms. We collected supragingival plaque samples from 10 caries-free and 10 caries-active children and cultured them to generate in vitro biofilms. We describe significant biomass reductions upon Aii20J exposure, as assessed by crystal violet assays. Taxonomical profiling using 16S rRNA gene amplicon sequencing revealed no significant changes in bacterial composition at the genus level. Interestingly, at the species level Aii20J-treatment increased the abundance of Streptococcus cristatus and Streptococcus salivarius. Both S. cristatus and S. salivarius express pH-buffering enzymes (arginine deiminase and urease, respectively) that catalyze ammonia production, thereby potentially raising local pH and counteracting the biofilm's cariogenic potential. Within the limitations of the study, our findings provide evidence of the biofilm-modulating ability of QQ and offer novel insights into alternative strategies to restore homeostasis within dysbiotic ecosystems.

4.
One Health ; 16: 100558, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363240

RESUMEN

Escherichia coli is the main cause of urinary tract infections (UTI). While genomic comparison of specific clones recovered from animals, and human extraintestinal infections show high identity, studies demonstrating the uropathogenicity are lacking. In this study, comparative genomics combined with bladder-cell and biofilm formation assays, were performed for 31 E. coli of different origins: 7 from meat (poultry, beef, and pork); 2 from avian-farm environment; 12 from human uncomplicated UTI, uUTI; and 10 from human complicated UTI, cUTI. These isolates were selected based on their genetic uropathogenic (UPEC) status and phylogenetic background. In silico analysis revealed similar virulence-gene profiles, with flagella, type 1 and curli fimbriae, outer-membrane proteins (agn43, ompT, iha), and iron-uptake (iutA, entA, and fyuA) associated-traits as the most prevalent (>65%). In bladder-cell assays, moderate to strong values of association (83%, 60%, 77.8%) and invasion (0%, 70%, 55.5%) were exhibited by uUTI, cUTI, and animal-derived isolates, respectively. Of interest, uUTI isolates exhibited a significantly lower invasive capacity than cUTI isolates (p < 0.05). All isolates but one produced measurable biofilm. Notably, 1 turkey meat isolate O11:H6-F-ST457, and 2 cUTI isolates of the pandemic lineages O83:H42-F-ST1485-CC648 and O25b:H4-B2-ST131, showed strong association, invasion and biofilm formation. These isolates showed common carriage of type 1 fimbriae and csg operons, toxins (hlyF, tsh), iron uptake systems (iutA, entA, iroN), colicins, protectins (cvaC, iss, kpsM, traT), ompT, and malX. In summary, the similar in vitro behaviour found here for certain E. coli clones of animal origin would further reinforce the role of food-producing animals as a potential source of UPEC. Bladder-cell infection assays, combined with genomics, might be an alternative to in vivo virulence models to assess uropathogenicity.

5.
J Oral Microbiol ; 15(1): 2208901, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187675

RESUMEN

Acyl-homoserine lactones (AHLs) are typical quorum-sensing molecules of gram-negative bacteria. Recent evidence suggests that AHLs may also affect gram-positives, although knowledge of these interactions remains scarce. Here, we assessed the effect of AHLs on biofilm formation and transcriptional regulations in the gram-positive Enterococcus faecalis. Five E. faecalis strains were investigated herein. Crystal violet was employed to quantify the biomass formed, and confocal microscopy in combination with SYTO9/PI allowed the visualisation of biofilms' structure. The differential expression of 10 genes involved in quorum-sensing, biofilm formation and stress responses was evaluated using reverse-transcription-qPCR. The AHL exposure significantly increased biofilm production in strain ATCC 29212 and two isolates from infected dental roots, UmID4 and UmID5. In strains ATCC 29212 and UmID7, AHLs up-regulated the quorum-sensing genes (fsrC, cylA), the adhesins ace, efaA and asa1, together with the glycosyltransferase epaQ. In strain UmID7, AHL exposure additionally up-regulated two membrane-stress response genes (σV, groEL) associated with increased stress-tolerance and virulence. Altogether, our results demonstrate that AHLs promote biofilm formation and up-regulate a transcriptional network involved in virulence and stress tolerance in several E. faecalis strains. These data provide yet-unreported insights into E. faecalis biofilm responses to AHLs, a family of molecules long-considered the monopole of gram-negative signalling.

6.
Front Cell Infect Microbiol ; 13: 1118630, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816581

RESUMEN

Introduction: Recent studies have revealed the presence of N-acyl-homoserine lactones (AHLs) quorum sensing (QS) signals in the oral environment. Yet, their role in oral biofilm development remains scarcely investigated. The use of quorum quenching (QQ) strategies targeting AHLs has been described as efficient for the control of pathogenic biofilms. Here, we evaluate the use of a highly active AHL-targeting QQ enzyme, Aii20J, to modulate oral biofilm formation in vitro. Methods: The effect of the QQ enzyme was studied in in vitro multispecies biofilms generated from oral samples taken from healthy donors and patients with periodontal disease. Subgingival samples were used as inocula, aiming to select members of the microbiota of the periodontal pocket niche in the in vitro biofilms. Biofilm formation abilities and microbial composition were studied upon treating the biofilms with the QQ enzyme Aii20J. Results and Discussion: The addition of the enzyme resulted in significant biofilm mass reductions in 30 - 60% of the subgingival-derived biofilms, although standard AHLs could not be found in the supernatants of the cultured biofilms. Changes in biofilm mass were not accompanied by significant alterations of bacterial relative abundance at the genus level. The investigation of 125 oral supragingival metagenomes and a synthetic subgingival metagenome revealed a surprisingly high abundance and broad distribution of homologous of the AHL synthase HdtS and several protein families of AHL receptors, as well as an enormous presence of QQ enzymes, pointing to the existence of an intricate signaling network in oral biofilms that has been so far unreported, and should be further investigated. Together, our findings support the use of Aii20J to modulate polymicrobial biofilm formation without changing the microbiome structure of the biofilm. Results in this study suggest that AHLs or AHL-like molecules affect oral biofilm formation, encouraging the application of QQ strategies for oral health improvement, and reinforcing the importance of personalized approaches to oral biofilm control.


Asunto(s)
Enfermedades Periodontales , Percepción de Quorum , Humanos , Biopelículas , Bacterias/metabolismo , Acil-Butirolactonas/metabolismo
7.
ACS Appl Mater Interfaces ; 14(50): 55431-55446, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36495267

RESUMEN

Design of advanced contact lenses (CLs) demands materials that are safe and comfortable for the wearers and that preserve the normal eye microbiota, avoiding chronic inflammation and biofilm development. This work aimed to combine the natural antibiofouling phosphorylcholine and the antioxidant and prebiotic resveratrol as integral components of CLs that may have the additional performance of preventing oxidative-stress related eye diseases. Different from previous uses of 2-methacryloyloxyethyl phosphorylcholine (MPC) as coating, we explored the feasibility of adding MPC at high proportions as a comonomer of 2-hydroxyethyl methacrylate (HEMA)-based hydrogels while still allowing for the loading of the hydrophobic resveratrol. Homogeneous distribution of MPC along the hydrogel depth (confirmed by Raman spectroscopy) notably increased solvent uptake and the proportion of free water while it decreased Young's modulus. Relevantly, MPC did not hinder the uptake of resveratrol by CLs (>10 mg/g), which indeed showed network/water partition coefficients of >100. Protocols for CLs sterilization and loading of resveratrol under aseptic conditions were implemented, and the effects of tear proteins on resveratrol release rate were investigated. CLs sustained resveratrol release for more than 24 h in vitro, and sorption of albumin onto the hydrogel, although attenuated by MPC, slowed down the release. The combination of MPC and resveratrol reduced P. aeruginosa and S. aureus growth as tested in a novel hydrogel disk-agar interface biofilm growth setup. The developed CLs showed excellent anti-inflammatory properties and biocompatibility in in ovo and rabbit tests and provided higher and more prolonged levels of resveratrol in tear fluid, which favored resveratrol biodistribution in anterior and posterior eye segments compared to eye drops. Correlations between the release profiles of resveratrol in vitro and in vivo were assessed. Relevantly, the CLs preserved the antioxidant properties of resveratrol during the entire 8 h of wearing. In sum, CLs prepared with high proportion in MPC may help address safety and comfort requirements while having drug releasing capabilities.


Asunto(s)
Antiinfecciosos , Lentes de Contacto , Animales , Conejos , Antioxidantes/farmacología , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Resveratrol/farmacología , Fosforilcolina/química , Staphylococcus aureus , Distribución Tisular , Hidrogeles/farmacología , Hidrogeles/química , Agua
8.
J Control Release ; 352: 776-792, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336096

RESUMEN

Carvacrol is a natural low-cost compound derived from oregano which presents anti-bacterial properties against both Gram-positive and Gram-negative bacteria. In this work, carvacrol-loaded PLA scaffolds were fabricated by 3D printing as platforms to support bone tissue regeneration while preventing biofilm development. Scaffolds were printed with or without a perimeter (lateral wall) mimicking the cortical structure of bone tissue to further evaluate if the lateral interconnectivity could affect the biological or antimicrobial properties of the scaffolds. Carvacrol incorporation was performed by loading either the PLA filament prior to 3D printing or the already printed PLA scaffold. The loading method determined carvacrol localization in the scaffolds and its release profile. Biphasic profiles were recorded in all cases, but scaffolds loaded post-printed released carvacrol much faster, with 50-80% released in the first day, compared to those containing carvacrol in PLA filament before printing which sustained the release for several weeks. The presence or absence of the perimeter did not affect the release rate, but total amount released. Tissue integration and vascularization of carvacrol-loaded scaffolds were evaluated in a chorioallantoic membrane model (CAM) using a novel quantitative micro-computed tomography (micro-CT) analysis approach. The obtained results confirmed the CAM tissue ingrowth and new vessel formation within the porous structure of the scaffolds after 7 days of incubation, without leading to hemorrhagic or cytotoxic effects. The absence of lateral wall facilitated lateral integration of the scaffolds in the host tissue, although increased the anisotropy of the mechanical properties. Scaffolds loaded with carvacrol post-printing showed antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa as observed in a decrease in CFU counting after biofilm detachment, changes in metabolic heat measured by calorimetry, and increased contact killing efficiency. In summary, this work demonstrated the feasibility of tuning carvacrol release rate and the amount released from PLA scaffolds to achieve antibiofilm protection without altering angiogenesis, which was mostly dependent on the perimeter density of the scaffolds.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Poliésteres/química , Antibacterianos/farmacología , Microtomografía por Rayos X , Bacterias Gramnegativas , Bacterias Grampositivas , Impresión Tridimensional , Biopelículas
9.
J Photochem Photobiol B ; 234: 112547, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36030693

RESUMEN

Knowledge of photo-oxidative stress responses in bacteria that survive antimicrobial photodynamic therapy (aPDT) is scarce. Whereas aPDT is attracting growing clinical interest, subsequent stress responses are crucial to evaluate as they may lead to the up-regulation of pathogenic traits. Here, we aimed to assess transcriptional responses to sublethal aPDT-stress and identify potential connections with virulence-related genes. Six Enterococcus faecalis strains were investigated; ATCC 29212, three dental root-canal isolates labelled UmID1, UmID2 and UmID3 and two vancomycin-resistant isolates labelled A1 and A2. TMPyP was employed as a photosensitiser. A viability dose-response curve to increasing concentrations of TMPyP was determined by culture plating. Differential expression of genes involved in oxidative stress responses (dps and hypR), general stress responses (dnaK, sigma-factorV and relA), virulence-related genes (ace, fsrC and gelE) and vancomycin-resistance (vanA) was assessed by reverse-transcription qPCR. TMPyP-mediated aPDT inactivated all strains with comparable efficiencies. TMPyP at 0.015 µM was selected to induce sublethal photo-oxidative stress. Despite heterogeneities in gene expression between strains, transcriptional profiles revealed up-regulations of transcripts dps, hypR as well as dnaK and sigma factorV after exposure to TMPyP alone and to light-irradiated TMPyP. Specifically, the alternative sigma factorV reached up to 39 ± 113-fold (median ± IQR) (p = 0.0369) in strain A2. Up-regulation of the quorum sensing operon, fsr, and its downstream virulence-related gelatinase gelE were also observed in strains ATCC-29212, A1, A2 and UmID3. Finally, photo-oxidative stress induced vanA-type vancomycin-resistance gene in both carrier isolates, reaching up to 3.3 ± 17-fold in strain A2 (p = 0.015). These findings indicate that, while aPDT successfully inactivates vancomycin-resistant and naïve strains of E. faecalis, subpopulations of surviving cells respond by co-ordinately up-regulating a network of genes involved in stress survival and virulence. This includes the induction of vancomycin-resistance genes in carrier isolates. These data may provide the mechanistic basis to circumvent bacterial responses and improve future clinical protocols.


Asunto(s)
Enterococcus faecalis , Estrés Oxidativo , Fotoquimioterapia , Vancomicina , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidad , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/fisiología , Factor sigma/metabolismo , Vancomicina/farmacología , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
J Appl Microbiol ; 132(3): 1825-1839, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34741374

RESUMEN

AIMS: The current study aimed to screen Bacillus strains with wide-spectrum quorum quenching (QQ) activity against N-acyl-l-homoserine lactones (AHLs), helpful in controlling virulence traits in Gram-negatives, including biofilm formation and also with anti-biofilm activity against Gram-positives. METHODS AND RESULTS: A total of 94 halotolerant strains of Bacillus isolated from soil and salt-lake sediment samples in Algeria were examined for the presence of QQ activity against AHLs, the presence of the aiiA gene, encoding an AHL lactonase enzyme typical of Bacillus spp., antimicrobial and anti-biofilm activities against Pseudomonas aeruginosa and Streptococcus mutans. Of all strains of Bacillus spp. isolated, 48.9% showed antibacterial activity. In addition, 40% of these isolates showed a positive QQ activity against long-chain AHLs, of which seven strains presented the aiiA gene. Among the species with broad-spectrum QQ activity, the cell extract of Bacillus thuringiensis DZ16 showed antibiofilm activity against P. aeruginosa PAO1, reducing 60% using the Amsterdam active attachment (AAA) biofilm cultivation model. In addition, the cell extract of B. subtilis DZ17, also presenting a broad-spectrum QQ activity, significantly reduced Strep. mutans ATCC 25175 biofilm formations by 63% and 53% in the xCELLigence and the AAA model, respectively, without affecting growth. Strain DZ17 is of particular interest due to its explicit halophilic nature because it can thrive at salinities in the range of 6%-30%. CONCLUSIONS: B. thuringiensis DZ16 and B. subtilis DZ17 strains have interesting antibacterial, QQ, and anti-biofilm activities. The high range of salinities accepted by these strains increases their biotechnological potential. This may open up their use as probiotics, the treatment and prevention of conventional and emerging infectious diseases. SIGNIFICANCE AND IMPACT OF STUDY: The use of safe, economical and effective probiotics is limited to control the infections related to multi-resistant bacteria. In our study, we provide two promising agents with QQ, anti-biofilm and antibacterial activities.


Asunto(s)
Bacillus thuringiensis , Bacillus , Argelia , Biopelículas , Percepción de Quorum
11.
Mar Drugs ; 19(2)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573187

RESUMEN

Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.


Asunto(s)
Biopelículas/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Percepción de Quorum/efectos de los fármacos , Acil-Butirolactonas/metabolismo , Pseudoalteromonas/efectos de los fármacos , Pseudoalteromonas/fisiología , Vibrio/efectos de los fármacos , Vibrio/fisiología
12.
Front Microbiol ; 11: 565548, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101239

RESUMEN

The important nosocomial pathogen Acinetobacter baumannii presents a quorum sensing (QS) system (abaI/abaR) mediated by acyl-homoserine-lactones (AHLs) and several quorum quenching (QQ) enzymes. However, the roles of this complex network in the control of the expression of important virulence-related phenotypes such as surface-associated motility and biofilm formation is not clear. Therefore, the effect of the mutation of the AHL synthase AbaI, and the exogenous addition of the QQ enzyme Aii20J on surface-associated motility and biofilm formation by A. baumannii ATCC® 17978TM was studied in detail. The effect of the enzyme on biofilm formation by several multidrug-resistant A. baumannii clinical isolates differing in their motility pattern was also tested. We provide evidence that a functional QS system is required for surface-associated motility and robust biofilm formation in A. baumannii ATCC® 17978TM. Important differences were found with the well-studied strain A. nosocomialis M2 regarding the relevance of the QS system depending on environmental conditions The in vitro biofilm-formation capacity of A. baumannii clinical strains was highly variable and was not related to the antibiotic resistance or surface-associated motility profiles. A high variability was also found in the sensitivity of the clinical strains to the action of the QQ enzyme, revealing important differences in virulence regulation between A. baumannii isolates and confirming that studies restricted to a single strain are not representative for the development of novel antimicrobial strategies. Extracellular DNA emerges as a key component of the extracellular matrix in A. baumannii biofilms since the combined action of the QQ enzyme Aii20J and DNase reduced biofilm formation in all tested strains. Results demonstrate that QQ strategies in combination with other enzymatic treatments such as DNase could represent an alternative approach for the prevention of A. baumannii colonization and survival on surfaces and the prevention and treatment of infections caused by this pathogen.

13.
Genes (Basel) ; 9(2)2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29462892

RESUMEN

There is increasing evidence being accumulated regarding the importance of N-acyl homoserine lactones (AHL)-mediated quorum-sensing (QS) and quorum-quenching (QQ) processes in the marine environment, but in most cases, data has been obtained from specific microhabitats, and subsequently little is known regarding these activities in free-living marine bacteria. The QS and QQ activities among 605 bacterial isolates obtained at 90 and 2000 m depths in the Mediterranean Sea were analyzed. Additionally, putative QS and QQ sequences were searched in metagenomic data obtained at different depths (15-2000 m) at the same sampling site. The number of AHL producers was higher in the 90 m sample (37.66%) than in the 2000 m sample (4.01%). However, the presence of QQ enzymatic activity was 1.63-fold higher in the 2000 m sample. The analysis of putative QQ enzymes in the metagenomes supports the relevance of QQ processes in the deepest samples, found in cultivable bacteria. Despite the unavoidable biases in the cultivation methods and biosensor assays and the possible promiscuous activity of the QQ enzymes retrieved in the metagenomic analysis, the results indicate that AHL-related QS and QQ processes could be common activity in the marine environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...